MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL
 Paper Code : EC602 DIGITAL SIGNAL PROCESSING
 UPID : 006032

Time Allotted : 3 Hours
Full Marks :70
The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following :
$[1 \times 10=10]$
(I) Which of the following is the difference equation of the FIR filter of length M, input $x(n)$ and output $y(n)$?
a) $\mathrm{y}(\mathrm{n})=\sum_{k=0}^{M+1} b_{k} x(n+k)$
b) $\mathrm{y}(\mathrm{n})=\sum_{k=0}^{M+1} b_{k} x(n-k)$
c) $\mathrm{y}(\mathrm{n})=\sum_{k=0}^{M-1} b_{k} x(n-k)$
d) None of the mentioned
(II) What are the type of digital signal processor?
(III) The system described by the input-output equation $y(n)=n x(n)+b x^{3}(n)$ is a \qquad
(IV) Which is the commutative property of the LTI System in case of discrete time system?
a) $x[n]+h[n]=h[n]+x[n]$
b) $x[n]+h[n]=h[n]^{*} x[n]$
c) $x[n] * h[n]=h[n] * x[n]$
d) $\mathrm{x}[\mathrm{t}] * \mathrm{~h}[\mathrm{t}]=\mathrm{h}[\mathrm{n}] * \mathrm{x}[\mathrm{n}]$
(V) If $X(z)$ is the z-transform of the signal $x(n)$, then what is the z-transform of the signal $x(-n)$?
(VI) The convolution using convolution sum formula is called \qquad
(VII) The z-transform of a sequence $x(n)$ which is given as $X(z)=\sum \infty k=-\infty x(n) z-n$ is known as \qquad
(VIII) The Convolution property of DFT says that $\operatorname{DFT}\{x(n) * h(n)\}$
(IX) The Cooley-Tukey algorithm of FFT is a \qquad
(X) What is the magnitude response $|W(\omega)|$ of a rectangular window function?
(XI) $x(n) * \delta(n-k)=$?
(XII) A continuous time LTI system has memory only when \qquad
Group-B (Short Answer Type Question)
Answer any three of the following :
2. Perform circular convolution of the two sequences.
$\underset{\uparrow}{\mathrm{N}_{1}(\mathbf{n})}=\left\{\mathbf{2 , 1 , 2 , 1 \}}\right.$ and $\underset{\widehat{\mathbf{X}_{2}}(\mathbf{n})}{ }=\{\mathbf{1 , 2 , 3 , 4 \}}$
3. . Prove that $Z\left[a^{n}\right]=\frac{z}{Z-a}$ is $|z|>|a|$.
4. Determine the system is Linear or Non Linear:- $y(n)=x^{2}(n)$
5. State the difference between linear and circular convolution.
6. State the difference between Overlap add method and Overlap save method

Group-C (Long Answer Type Question)

Answer any three of the following :
7. Perform the Linear convolution of the following sequences by Overlap add method $X(n)=\{1,2,3,-1,-2,-3,4,5,6\}$ and $h(n)=\{2,1,-1\}$
8. (a) a)Write down the properties of ROC in z transform
(b) The transfer function of a system is given by $\mathrm{H}(\mathrm{z})=1 /(1-0.5 z-1)+(1 /(1-2 z-1))$. Determine the stability and causality of the system for a)ROC: $|Z|>2$ b)ROC: $|Z|<0.5$.
9. Perform the Linear convolution of the following sequences by overlap save method.
$X(n)=\{1,2,3,-1,-2,-3,4,5,6\}$ and $h(n)=\{2,1,-1\}$
10. (a) Determine the inverse z transform of $X(z)=\log \left(1+a z^{-1}\right) ;|z|>|a|$
(b)
. Find $Z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$.
11. (a) What are the difference between hamming and blackman window
(b) Design Butterworth filter using impulse invariant method for the following specification

$$
\begin{array}{r}
0.8 \leq\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \leq 1, \quad 0 \leq \omega \leq 0.2 \pi \\
\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \leq 0.2, \quad 0.6 \pi \leq \omega \leq \pi
\end{array}
$$

*** END OF PAPER ${ }^{* * *}$

